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Changes in Observed Global Average Temperature

Observations:
Earth’s Climate is
Changing Rapidly,
and Evidence Points
to Human Activities
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Community Earth System Model

*Systems of differential
equations that describe
fluid motion, radiative
transfer, etc.

Horizontal Grid
(Latitude-Longitude) [~

Vertical Grid )
(Height or Pressure) |

*Planet divided into 3-
dimensional grid to solve
the equations

Physical Processes in a Model

solar  terrestrial
radiation radiation
' i

* Atmosphere and land

) .
o} ) traditionally on same
el avien 9 : horizontal grid
S e e Finite «Similarly for ocean/ice
Volume

*Sub-gridscale processes

(FV) are parameterized

Version



Current Climate Models Inadequate for

Regional Analyses
Common bias for many regions and most/all models: Too

much light rainfall, not enough heavy
CESM1 Bias in Rainfall Frequency

East Pacific (JFM 2002) US Great plains (JJA 2002)
24 - Mean = 3.98 mm/day |— 24 — Mean = 2.39 mm/day
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Courtesy of Rich Neale




Current Models Underestimate Trends in
Severe Precipitation

EPI Percent Anomaly Observations and Historical
Simulations - CONUS
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e 2day duration 5year return
» EPI calculated annually for 1901-2005,

» Decadal averages calculated for 1906-2005

Multi-model median
of CMIP5 simulations
shows an increasing
trend in EPI
anomalies over last 4
decades

»Butitis
smaller than
observed

» Standard
deviation
between
models large




Uniqueness of CESM on Blue Waters

» High-resolution Spectral Element (SE) dynamical
core development, tuning, and testing

» Time-slice runs for 1979-2010 AMIP study at
0.25° (~25 km) resolution, and then for
2070-2100 using high RCP8.5 scenario.

» UIUC/NCAR project with NSF to run CESM1 at
0.25° (~25 km) resolution with 1° ocean
» 150+ years in past and 100 years future
» Multiple realizations (scenarios)

» Uncertainty analyses to enhance understanding
of radiative-cloud-aerosol interactions



Replace Finite- > New default for calculations using
horizontal resolutions of 100 km (1

Volume (FV) degree) or finer.

with new > SE dycore uses accurate, high-order

Spectral numerical methods on rectangular
elements in a cubed-sphere geometry.

Element (SE) » CAM-SE possesses nearly linear scaling to

dynamical processor counts of up to one cpu per

core element. In addition, CAM-SE has regional

mesh-refinement capability.

» CAVEAT: Small but significant biases in
low cloud forcing when CAM-SE 1s used.
These biases are believed to be related to

‘ differences in vertical advection schemes

SEs=s ; used in CAM-FV and 1in the current

' implementation of CAM-SE.
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Resolution of Climate Models

IPCC AR5 Blue Waters
1-2° horiz (100-200 km) 0.25 (25 km)




TRMM (2001-2010)

Improved JJA Diurnal Rainfall
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Improved ENSO
Nino3.4 index

Power spectrum of Nino3.4
index

Observations (thin line)

Top: High-resolution coupled
model (thick solid line)

Bottom: Standard resolution
CCSM4 long baseline run.

95% significance levels are
overlaid.

Coutesy of Justin Small



Tropical Cycl

Observations
=y

1979-2005 TS Hl M2 H3 HA D Observations

1979-2005 TS HI W2 M3 He HS 25 km CAM 5.1

ones

High resolution (0.25°)
atmosphere CAM
simulations produce an
excellent global
hurricane climatology

Courtesy of Michael Wehner, LBNL



Projected Increasing Hurricane Intensity
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Number of storms per year
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Simulations suggest the future
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All storms

will experience:
4— ¢ fewer hurricanes,

* but the strongest storms will
be more intense.

High resolution (0.25°)
atmosphere simulations
produce an excellent
global hurricane
climatology

Cat 2 Cat3 Cat4 Cat5

9 ].100% 100% M% 80% 58% 96%
TS Cat1l

“ Recent past

w Future (+2C, 2XCOz2)

Courtesy of Michael Wehner, LBNL
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Multi-Century Analyses of CESM Will be
12-km CAM:SE Run Unprecedented

15Z 08 Aug 2004 (Pmin = 944.215 mb)

 Fully couple configuration
« 25km CAM5-SE
« 1-degree ocean

« Multi-century integration
« 1850-2100

« Currently Running on Blue
Waters

Precipitation (mm/day)
5 10 15 20 25 30 40 60 80 100 200 500

Enhanced understanding of climate
change, e.g., severe weather and
regional effects
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Cloud-Aerosol-Radiation Ensemble Model
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Optimized Physics-Ensemble

KF Climate Mean (mtn/day)
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Plan for CWREF/CAR Experiments

Define a subset from ~100 CAR configurations based on
CWREF runs over North America (driven by ERI reanalysis)
that can capture the observed climate characteristics.

Run CWREF/CAR for 1979-2012 over both North America and
Asia as driven by ERI as well as CCSM4 simulations 1n
CMIPS for 1950-2005 and future 2006-2060 under RCP4.5 and
RCPS.5.

Use CWREF (Liang et al. 2012) with the built-in CAR (Liang
and Zhang 2013) to estimate the range of future climate change
projections at regional scales.

This range 1s anticipated to be significant and serve as a proxy
for the regional response to the potential CESM climate
sensitivity.






